skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Payne, Gregory F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Redox, a native modality in biology involving the flow of electrons, energy, and information, is used for energy‐harvesting, biosynthesis, immune‐defense, and signaling. Because electrons (in contrast to protons) are not soluble in the medium, electron‐flow through the redox modality occurs through redox reactions that are sometimes organized into pathways and networks (e.g., redox interactomes). Redox is also accessible to electrochemistry, which enables electrodes to receive and transmit electrons to exchange energy and information with biology. In this Perspective, efforts to develop electrochemistry as a tool for redox‐based bio‐information processing: to interconvert redox‐based molecular attributes into interpretable electronic signals, are described. Using a series of Case Studies, how the information‐content of the measurements can be enriched using: diffusible mediators; tuned electrical input sequences; and cross‐modal measurements (e.g., electrical plus spectral), is shown. Also, theory‐guided feature engineering approaches to compress the information in the electronic signals into quantitative metrics (i.e., features) that can serve as correlating variables for pattern recognition by data‐driven analysis are described. Finally, how redox provides a modality for electrogenetic actuation is illustrated. It is suggested that electrochemistry's capabilities to provide real‐time, low‐cost, and high‐content data in an electronic format allow the feedback‐control needed for autonomous learning and deployable sensing/actuation. 
    more » « less
    Free, publicly-accessible full text available August 22, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. Free, publicly-accessible full text available November 13, 2025
  4. Free, publicly-accessible full text available February 1, 2026
  5. Abstract We report the integration of 3D printing, electrobiofabrication, and protein engineering to create a device that enables near real‐time analysis of monoclonal antibody (mAb) titer and quality. 3D printing was used to create the macroscale architecture that can control fluidic contact of a sample with multiple electrodes for replicate measurements. An analysis “chip” was configured as a “snap‐in” module for connecting to a 3D printed housing containing fluidic and electronic communication systems. Electrobiofabrication was used to functionalize each electrode by the assembly of a hydrogel interface containing biomolecular recognition and capture proteins. Specifically, an electrochemical thiol oxidation is used to assemble a thiolated polyethylene glycol hydrogel, that in turn is covalently coupled to either a cysteine‐tagged protein G that binds the antibody's Fc region or a lectin that binds the glycans of target mAb analytes. We first show the design, assembly, and testing of the hardware device. Then, we show the transition of a step‐by‐step sensing methodology (e.g., mix, incubate, wash, mix, incubate, wash, measure) into the current method where functionalization, antibody capture, and assessment are performed in situ and in parallel channels. Both titer and glycan analyses were found to be linear with antibody concentration (to 0.2 mg/L). We further found the interfaces could be reused with remarkably similar results. Because the interface assembly and use are simple, rapid, and robust, we suggest this assessment methodology will be widely applicable, including for other biomolecular process development and manufacturing environments. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  6. Abstract Redox is a unique, programmable modality capable of bridging communication between biology and electronics. Previous studies have shown that theE. coliredox-responsive OxyRS regulon can be re-wired to accept electrochemically generated hydrogen peroxide (H2O2) as an inducer of gene expression. Here we report that the redox-active phenolic plant signaling molecule acetosyringone (AS) can also induce gene expression from the OxyRS regulon. AS must be oxidized, however, as the reduced state present under normal conditions cannot induce gene expression. Thus, AS serves as a “pro-signaling molecule” that can be activated by its oxidation—in our case by application of oxidizing potential to an electrode. We show that the OxyRS regulon is not induced electrochemically if the imposed electrode potential is in the mid-physiological range. Electronically sliding the applied potential to either oxidative or reductive extremes induces this regulon but through different mechanisms: reduction of O2to form H2O2or oxidation of AS. Fundamentally, this work reinforces the emerging concept that redox signaling depends more on molecular activities than molecular structure. From an applications perspective, the creation of an electronically programmed “pro-signal” dramatically expands the toolbox for electronic control of biological responses in microbes, including in complex environments, cell-based materials, and biomanufacturing. 
    more » « less
  7. Introduction:Molecular communication is the transfer of information encoded by molecular structure and activity. We examine molecular communication within bacterial consortia as cells with diverse biosynthetic capabilities can be assembled for enhanced function. Their coordination, both in terms of engineered genetic circuits within individual cells as well as their population-scale functions, is needed to ensure robust performance. We have suggested that “electrogenetics,” the use of electronics to activate specific genetic circuits, is a means by which electronic devices can mediate molecular communication, ultimately enabling programmable control. Methods:Here, we have developed a graphical network model for dynamically assessing electronic and molecular signal propagation schemes wherein nodes represent individual cells, and their edges represent communication channels by which signaling molecules are transferred. We utilize graph properties such as edge dynamics and graph topology to interrogate the signaling dynamics of specific engineered bacterial consortia. Results:We were able to recapitulate previous experimental systems with our model. In addition, we found that networks with more distinct subpopulations (high network modularity) propagated signals more slowly than randomized networks, while strategic arrangement of subpopulations with respect to the inducer source (an electrode) can increase signal output and outperform otherwise homogeneous networks. Discussion:We developed this model to better understand our previous experimental results, but also to enable future designs wherein subpopulation composition, genetic circuits, and spatial configurations can be varied to tune performance. We suggest that this work may provide insight into the signaling which occurs in synthetically assembled systems as well as native microbial communities. 
    more » « less
  8. Melanins have complex structures, difficult-to-characterize properties, and poorly understood biological functions. Electrochemical methods are revealing how melanin's redox-state molecular-switching is coupled to its electron-transfer activities. 
    more » « less